
10

data behind and to move on with

other activities instead. Ideas that

are no longer useful should be

abandoned in a way that allows

them to be recovered later when

a context in which they might be

useful emerges. This option for

later recovering abandoned ideas

produces the ability to refactor

an idea, using some or all of

the original idea or artifact in a

useful way. To be really good at

abandonment and recovery, you

need to reduce or eliminate the

maintenance costs of keeping your

ideas at your fingertips.

At this point, you might be asking

yourself, “What does all this have

to do with code; and where’s that

cool boneyard I was promised in

the title to this article?” Creating a

code boneyard is an abandonment

and recovery technique. It gives

you the ability to freely discard

code because you’ll know where to

look for it later. Overtime, the bits

of code (or bones) you discard will

start to accumulate and you’ll find

you have a rich set of examples to

draw on when you need to generate

Tools of the Trade

Building a Code Boneyard
by Mike Kelly

G
reat testers suffer from

overproduction – they

generate more ideas

than they could ever

reasonably use. It happens so often,

we have testing techniques and

approaches that are focused on

enabling you to make decisions

around which tests you should run

(because you can’t run them all)

and which tests you shouldn’t. If

you are new to testing and don’t yet

suffer the pain of overproduction,

we also have test techniques and

approaches that will help you come

up with more ideas for testing than

you could possibly use.

Why does this dynamic exist?

Why would we on one hand have

techniques designed to help us

generate more ideas than we could

possibly use and on the other hand

have techniques that help us narrow

the scope of our testing?

One problem testers face is that we

don’t know what we don’t know.

This causes us to error on the side

of producing too much in an effort

to compensate for the unknown;

and as part of that idea production

process we learn about what it is

we are testing. Once we sufficiently

understand the problem, or think

we sufficiently understand the

problem because we’ve produced

as many ideas as we possibly

can, we can then make informed

decisions around which tests might

be the right tests to run. This is one

of the main reasons overproduction

occurs.

People who are experts at

producing ideas have a wealth

of ideas, data, and experience

available to them; more than could

possibly be required. Testers who

are good at overproduction make

idea production cheap, quick,

and diversified so they don’t

worry about getting it right the

first time. Any one of their ideas

can be a bad idea or could miss

the mark and that’s ok because

they know they will get at least

one idea right and will abandon

the ones that don’t work. This

technique is commonly referred to

as “shotgunning”. Another familiar

example of overproduction is the

classic brainstorm. Neither of these

activities are wasteful if the effort

is relatively inexpensive and the

ideas sufficiently diversified.

Overproduction often results

in growth of the tester; having

produced something once you

can more easily produce it again,

making you more skilled as a result

of overproduction. For example,

each time I need to produce ideas

for performance testing I get a

little bit faster and my list grows a

little longer. That’s not accidental.

It’s because I’m systematic in

how I produce my ideas and I’m

systematic about how I abandon

and recover them.

Abandonment is another key

part of idea generation – without

it testers would be completely

overwhelmed. A tester who is

good at abandonment knows

when to stop an activity or leave

11

code quickly.

I currently have three separate

code boneyards that I work with.

At work my team has a simple

SharePoint list where we can

upload scripts (Ruby, SQL, VB,

etc...) that we think others might

find useful. I also carry a thumb

drive with me where I keep a

large pile of Ruby scripts and

code snippets (the thumb drive

keeps my boneyard mobile). And

finally, in my webmail account

I have a folder for code snippets

from mailing lists where I may

see something that I can’t apply

immediately, but I know I might

have a use for later.

Here is what’s common between

those three boneyards:

Each “pile” has a specific •

purpose (work code, personal

code, community code that

might be useful at some point,

but I haven’t really researched

or used yet).

You have access to it wherever •

you go. I can access SharePoint

anywhere on the office

network, the thumb drive is

always with me, and I can hit

webmail anywhere I have an

internet connection.

You can search it (thumb •

drive), index it (SharePoint), or

sort it (webmail). That is, you

can use tools to aid in rapid

recovery.

Here’s what you don’t want to •

think about as you build your

boneyard:

Don’t think about maintaining •

the code or worry about

compatibility issues.

Don’t limit your boneyard •

to working code - there can

be value in storing ideas that

didn’t work. Many times your

best code can be found in bones

created as you struggled with

a difficult problem you never

managed to completely solve.

Don’t think you always have •

to go back to the boneyard. I

used to keep reusing the same

bit of Ruby code that loaded

all the filenames in a directory

(and all it’s subdirectories) into

an array. One day I discovered

I could actually remember the

code enough to write it from

scratch.

A code boneyard is more than

a dumping ground for physical

resources like code that you can

abandon and recover. The very

act of going through the process

of idea generation and pruning

changes the tester - even if you

abandon an artifact, you still retain

in your mind the experiences of

creating it. You retain the learning

experience, the effort invested in

improving your position on the

learning curve. The next time you

need to create something similar

you are better at it and you will be

able to achieve the results you want

more quickly.

About the Author

Mike Kelly is currently a Software

Development Manager for a

Fortune 100 company. Mike also

writes and speaks about topics in

software testing. He is currently

the President for the Association

for Software Testing and is a

co-founder of the Indianapolis

Workshops on Software Testing,

a series of ongoing meetings on

topics in software testing, and a

co-host of the Workshop on Open

Certification for Software Testers.

You can find most of his articles

and blog on his website www.

MichaelDKelly.com.

Tactics for managing your ideas

Overproduction, abandonment, and recovery are tactics
for how to manage your ideas:

Overproducing ideas for better selection. Producing
many different speculative ideas and making speculative
experiments, more than you can elaborate upon in the
time you have. Examples are brainstorming, trial and
error, genetic algorithms, free market dynamics.

Abandoning ideas for faster progress. Letting go of
some ideas in order to focus and make progress with
other ones.

Recovering or reusing ideas. Revisiting your old ideas,
models, questions or conjectures; or discovering ideas
already made by someone else.

You can find more skills and tactics critical to the
professional exploration of technology here: http://www.
satisfice.com/articles/et-dynamics.pdf

