
5

I have a game I play with programmers. I call it 
�ve bugs in �ve minutes. It’s been I while since 
I’ve done it (you have to be si�ing close to the 
people doing the programming), but I still get 
to play it every now and then. 

�e game works like this:

A programmer �nishes coding some testable 1. 
unit of work.

�e programmer comes over and throws 2. 
down the testing gauntlet.

You go over to the programmer’s desk and 3. 
they launch the so�ware you will be testing, 
navigating to the code that is supposedly 
“done,” and the programmer establishes the 
limits to the so�ware they are presenting.

You accept or you decline the challenge 4. 
(noting that declining lowers your project 
“street cred” and will eventually lead to 
programmer ridicule and si�ing alone at 
lunch).

If you accept, you test for �ve minutes with 5. 
the programmer looking over your shoulder.

Every time you �nd a bug, you laugh 6. 
sadistically and tell the programmer the bug 
you found.

�e programmer (and this is important) 7. 
con�rms or denies that what you found counts 
as a bug. Don’t get caught arguing your bug 
right now, get the feedback and move on. 
You can discuss the relative merits of your 
bug a�er the time limit has expired. 

A�er �ve minutes you stop.8. 

If you found �ve bugs (that the programmer 9. 

con�rms are bugs), the programmer pays you 
�ve dollars (or buys you lunch).

If you fail to �nd �ve bugs (that the 10. 
programmer con�rms are bugs), you pay 
the programmer �ve dollars (or buy them 
lunch).

I �nd that this game has the following side 
e�ects:

Over time, I tend to get more free lunches v฀

then I give. 

Over time, I develop be�er communication v฀

with the programmers; they become more 
willing to help me, and they become more 
interested in �xing my bugs.

Over time, the programmers get be�er at v฀

preventing the types of bugs I �nd - forcing 
me to change my test techniques and raise 
the bar of my testing.

Over longer periods of time with the same v฀

developers, I start to give more free lunches 
then I get.

I also �nd that over time I tend to learn a lot 
about what the programmer thinks the so�ware 
is suppose to do, how they designed it, and 
how it’s suppose to integrate with the rest of 
the system. As I’m learning about the so�ware, 
they are learning about what kind of problems 
I’m concerned about and how I �nd them. I �nd 
that I’ll rarely �nd the same bugs more then a 
handful of times. Programmers are quick learners 
– and they like free lunches. �is game allows us 
to both grow in a fun li�le competitive way.

Tools of the Trade

5Bugs
Minutes

Mike Kelly teaches how to build credibility with 
developers and win a free lunch in the process


