
Due to different motivators and differing
time pressures, communication between
testers and developers can easily break
down. It’s often easy for a tester to think
of a simple test the developer could have
run before releasing the code, a simple
test which would have found a prob-
lem—without appreciating the time
pressures imposed on the developer.
And it’s easy for developers to see an
overwhelming number of low-value or
non-meaningful defects reported—without
appreciating the expectations and metrics
management measures against the
testers. Use the following techniques to
increase communication and to bring
closer together the testers and developers
on your project. These tips get you
working side by side on problems,
rather then tossing problems over some
invisible wall.

Share Test Scripts with
Developers

Problems encountered by test scripts
can be lengthy or difficult to reproduce.
I’ve submitted defects that took hours 
to reproduce manually because of
lengthy setup. 

If you make all of your test scripts
available to the entire team, however, 
developers can look at the script code
and the script logs, rerun the scripts and
watch them execute, rerun them in local
environments with debug information
written to logs, or rerun them in 
conjunction with other tools. 

To make this strategy most effective,
reference your scripts in the submitted
defect list. The development team can
run the scripts without checking with
you first, thus removing a manual step.

In addition to sharing the test scripts,
provide the development team with a 
remote automated test-script execution box.
Most enterprise tools allow for distributed
test execution. If you provide one of your
test lab machines to run your scripts, 

Make Smoke Tests Available
to Everyone

Every time a developer, integrator, or
build-master creates a build, there’s 
potential for something to go wrong.
Something is left out, a file doesn’t end
up where it is supposed to be, the wrong
version is compiled, and so on. When
something goes wrong, testers waste
their time discovering that the build isn’t
stable enough to be tested, and program-
mers get disrupted when they are called
back from their next task to fix it. The
solution is to create a series of tests that
exercises the entire system from end to
end and to make it part of the build
process. These tests, taken as a whole, are
commonly called smoke tests. A smoke test
doesn’t have to be exhaustive, but it should
be capable of exposing major problems. 

Make the smoke test available to
both testers and developers by using a
central interface such as a project website
or a test-management tool. If everyone
has the ability to execute the smoke test
and the results are simple to interpret,

developers can execute the tests they
need while simultaneously using their
own computers to keep developing. This
technique allows developers to work on
your problem. Without the testing box, the
developers might not be able to run a full test
due to time and equipment constraints. 

Sharing test scripts with developers
also enables everyone on the team to
work with the same tools used to develop
the scripts. When team members use the
same tools, a likely side effect is that 
developers take the time to offer 
improvements to the scripts. After running
one of my scripts, a developer once told
me that he already had a unit test script
that did something similar “behind the
GUI.” Together we reviewed both scripts
and ultimately transferred the data from
my regression script to work with his
unit test script, which executed in a frac-
tion of the time of my regression script
and provided easier-to-read results. The
more feedback you get from developers
on your scripts, the more powerful your
scripts will become.

From the Front Line

How to Win Friends
and Automate Testing
by Michael Kelly

10 BETTER SOFTWARE MAY/JUNE 2005 www.StickyMinds.com

G
et

ty
 Im

ag
es



testers won’t be pressured to provide
this service for everyone else on the
team. Getting team members other than
testers to run the smoke test may take a
little patience and prompting the first
couple of times, but after that, most
people will prefer not relying on 
someone else for such a simple task.

Perform Runtime 
Analysis Together

Runtime analysis provides information
on items such as code coverage, 
memory utilization and leaks, and exe-
cution performance. I’ve never worked
with a developer who was actually
tasked with performing runtime analysis.
The developer was always doing it to
solve a problem discovered by 
someone else. I’ve found that the most

effective way to ensure that runtime
analysis gets done is to start performing
the analysis myself. As a tester, you
don’t need to become a runtime analysis
expert; all you need to do is learn the
basics—learn a little about the 
technologies you’re testing (common
problems, bottlenecks, and performance
problems) and find some time to 
actually do some testing.

Of all the techniques described in
this article, I’ve found runtime analysis
the most effective at increasing developer/
tester communication. Once you find
something (or even if you only think
you may have found something), you
should show a developer what you
have. Suddenly, you’re no longer a 
technology-blind tester who doesn’t
know anything about development.
Once a developer knows that a tester
has the desire and the aptitude to learn,
the developer typically is willing to 
spend as much time as available 
helping the tester to understand the 
applicable technologies. From the devel-
oper’s point of view, explaining the tech-
nologies once, early in the project, saves

files as a means of capturing bugs (and
assisting in debugging) led us to an 
increase in the testability of the application
under test. 

Getting the Most Out of Your
New Friendship

My experience has been that as you
begin working more closely with members
of the development team you will 
notice that they are just as interested in
learning new tools and skills as you
are. Use these opportunities to build 
relationships that will support you as
you try something new. For example, if
your organization has just purchased a
new testing tool that requires knowl-
edge of Java and you only know a
scripting language, use your new 
relationship to get help and guidance as

you take on the new challenge. Be sure
you are offering similar help in return.
I recently worked with a developer
while he was doing component testing.
As he developed the initial JUnit
scripts, I followed along behind him
and extended the scripts to test boundary
value conditions and equivalence classes.
As he reviewed them, we were able to
have a discussion about the techniques
I was using, and I know that his future
unit tests will probably include these
types of tests. Developing these 
relationships will be difficult at first,
but the long-term benefits are more
than worth it. {end}

Michael Kelly is a senior consultant for
Fusion Alliance. With experience in 
software development and testing, Mike
writes about and speaks on software 
testing. Mike is currently serving as the
program director for the Indianapolis
Quality Assurance Association and mem-
bership chair for the Association for 
Software Testing. You can reach Mike by
email at Mike@MichaelDKelly.com.

him from having to answer many small
questions later on when time pressures
are greater. At the very least, the tester
will have a basic understanding from
which to ask smarter and more mean-
ingful questions.

At the same time the developer is
helping the tester, the developer may in
turn look to the tester for help in learning
the testing tools. This is an opportunity
for the tester to share information on
the possible risks and long-term effects
of the problems found, if they’re not
fixed immediately. Together, tester and
developer uncover and refine perform-
ance requirements and simultaneously
learn new skills. This technique gets
everyone working together by leveraging
tools that both teams can share—and
some tools specific to each team.

Use Log Files to 
Isolate Problems

As I was developing new tests for a
Java Web application on a past project,
I was executing a “view source” in IE. I
was surprised when I stumbled across
the record of a Java exception in one of
the pages. I looked at the browser again,
but on the GUI level there was no indi-
cation that there was a problem with
the software. Because of what I’d seen, I
augmented our existing automation
framework to look in the page source
for exceptions every time a new page
was loaded. Once the developers heard I
had started parsing the page source,
they started to log more information
there as a standard practice. Once that
was running smoothly, one of the devel-
opers started showing me the Web serv-
er logs for the application. Together we
developed a set of scripts that would
parse those logs at the end of any given
test run. We then saw the same effect.
Once developers knew we were check-
ing these logs at runtime, they again
started to log more information for us.
The simple technique of leveraging log

12 BETTER SOFTWARE MAY/JUNE 2005 www.StickyMinds.com

From the Front Line

My experience has been that as you begin working more closely
with members of the development team you will notice that they
are just as interested in learning new tools and skills as you are. 




