
P
ho

to
gr

ap
h

by
 C

hr
is

ti
ne

 B
al

de
ra

s

Open-Source
Scripting Tool

Aids in Testing
Web Services

Ruby Can Help You Do A Whole
Lot of Testing With Just

A Little Effort

www.stpmag.com • 13

are, as well as some of the basic con-
cepts behind them, but you may not
know what makes testing Web services
unique. The toughest challenge in test-
ing Web services is the absence of a user
interface, which often makes it difficult
for testers who typically test applications
only manually. This means that some
level of automation, or the use of spe-
cialized tools, is necessary to perform
the testing. There are many good tools
that can help, but nothing beats creat-
ing your tests with a scripting language.

Testing Web services is exciting to
me because it requires an intriguing
mix of black-box testing skills and cod-
ing skills. It also adapts well to automa-
tion (no cumbersome GUIs getting in
the way) and still requires you to think
about the underlying business logic
behind the service. In this article, I’ll
share some of the scripting I’ve done on
a recent financial services project with
the open-source, object-oriented pro-
gramming language called Ruby. I used
Ruby to create test XML files based on
production data, submitted those files
to the Web service I was testing, and
parsed the resulting XML for valida-
tion. I was able to execute thousands of
different XML test cases in only a few
days of work.

The Ruby code in this article is sim-
ple and straightforward, but it’s also
powerful. It allowed me to do a lot of
testing with very little effort. I’ll start
with some simple code (connecting to
the Web service) and end with some
more simple code (validating the
response I get back). I’ll add my dis-
claimer now: I’m not a developer. This
is Ruby code written by a tester for a
tester. I make no claim to the fastest or
most elegant code—it just works.

We’ll walk through the Ruby code a
step at a time. Looking at code in

this manner can sometimes be
distracting for some people.

Often, it helps to see all
the code at once. For

those of you who
would like to

see the sam-
ple code

in its entirety, you can download the
Ruby script at www.stpmag.com/
downloads/stp-0607_galen.zip.

Using Ruby to Connect to A
WSDL Service
The first thing you need to do is estab-
lish a connection to your Web service
and get some data moving back and
forth between your script and the serv-
ice. Ruby offers many ways to do this,
none of which is particularly well docu-
mented. In the end, I had to team up
with a developer to get the final code
working, but when all was said and
done, it took us only a couple of days,
part-time, to get it figured out.

The first service we connected to was
a WSDL (Web Service Description
Language) service. We used the Ruby
Simple Object Access Protocol (SOAP)
libraries to make our call. The basic
logic goes as follows:

1. Take an XML file (for us, each XML
file was a test case) and wrap it in a
SOAP envelope. Note: A SOAP
envelope element is the root element of a
SOAP message. It defines the XML
document as a SOAP message.

2. Create a connection to the WSDL
service.

3. Send the SOAP envelope to the
service (HTTP post).

4. Wait for a response.
5. Receive the response XML (or the

error).

Following is the code we used to
implement that logic. I’ll walk you
through it one section at a time, but if
you’re just getting started, Brian Marick
has a better “first look” article on script-
ing with Ruby. I have a full reference to
it below.

First, we need to include the various
soap libraries we will be using:

require ‘soap/element’
require ‘soap/rpc/driver’
require ‘soap/processor’
require ‘soap/streamHandler’
require ‘soap/property’

Next, we declare a constant for the

endpoint (the endpoint is the location of
the Web service) and we assign our
XML to a variable:

LOCALHOST_ENDPOINT = “http://local-
host:8080/services/Service”
request_xml_string = ‘xml...’

In the code snippet above,
request_xml_string is assigned the XML
request that the Web service is expect-
ing. The next line creates a connection
to the service using HTTPStream
Handler:

stream = SOAP::HTTPStreamHandler.new
(SOAP::Property.new)

Once we’ve defined the connection,
it’s time to build the SOAP envelope,
which is made up of a header and a
body. The following creates the header
and the body, using the service method
getResponse and the XML stored in the
variable above:

header = SOAP::SOAPHeader.new
body_item =
SOAP::SOAPElement.new(‘getResponse’,
request_xml_string)
body = SOAP::SOAPBody.new(body_item)
envelope = SOAP::SOAPEnvelope.new(header, body)

Now we’re ready to create the actual
request string using the envelope and
send it to the service. Once it’s sent, we
wait for the response to be returned and
store the response value in the variable
resp_data:

request_string = SOAP::Processor.marshal(envelope)
request =
SOAP::StreamHandler::ConnectionData.new(request
_string)
resp_data = stream.send(LOCALHOST_ENDPOINT,
request, ‘getResponse’)

The above code creates the XML
string from the Ruby SOAP objects,
sends the string and stores the
response. I know I glossed over some of
that, but that’s because I got some help
from a real developer. There are several
different ways to do this, and this is just
one example. If, like me, you aren’t a
Ruby wizard, I recommend working
with a developer to get your connection

Michael Kelly is an independent consultant
who focuses on test automation and explorato-
ry testing. Kelly also serves as a director
at large for the Association for Software
Testing. You can reach him by e-mail at
Mike@MichaelDKelly.com

By Michael Kelly

Many systems developed today involve the use of Web
services. I will assume you know what Web services

14 • Software Test & Performance JULY 2006

RUBY OPEN-SOURCE SCRIPTING

code working. It’s the only tricky part in
this entire article.

Once we had a working script that
allowed us to send our XML test cases,
we were ready to start testing. Initially, we
validated all the result XML manually—
nothing beats the power of the brain—
but over time, that work became tedious
and not very fruitful. We then started
building in automated validation
for certain XML elements as they
came back from the service.
Once that was done, we had only
to check for test case–specific
information when validating
results.

Using Ruby to Generate XML
We used Ruby and JUnit (see
the Using Ruby With JUnit side-
bar for more information) for
all of our traditional black-box
functional testing, but we want-
ed more. All of the Web services
we were testing were new inter-
faces to existing financial servic-
es applications. That meant we needed
to do a very large amount of regression
testing for a very large amount of data.
If you can’t tell from the process dis-
cussed above, each planned test case we
executed was a fair amount of work.

We needed a faster way to regression
test; something that would allow us to
generate a lot of test cases, run them, do
some basic validation, and then do man-
ual testing in areas where problems
were identified. So we decided to start
using Ruby to generate XML test cases
based on existing production data. That
process turned out to be simpler than
we thought it would be, going pretty
much like this:

1. Open the file containing all the
policy data that will be used to
generate the XML files.

2. For each line in the file, create a new
XML file with that policy data.

3. Close the file.

We could do this because the service
we were testing was a simple query serv-
ice. It would be more difficult if the
service were more complex.

The XML we generated followed

the ACORD standard (insurance.xml
.org/standards), and all the data in
the file dump was very basic policy
data: policy number, contract number
and version number. With those three
values we could generate our request
for the service. With the following
code, we were able to generate around
500 test cases every second (depend-
ing on the size of the data dump we
sent it).

The first line in the code opens the
file containing all the policy data
dumped from production:

myDataFile = File.open(‘C:/Service Testing/Service A
Testing/12.22.05 - policy data dump.txt’, “r”)

Then, for each line in the file
(myDataFile) we want to create a test
case file (or XML request):

myDataFile.each { | line |

#Build the XML file...
}

The .each method executes the
block of code following it for each line
in myDataFile. The current line is
stored in the line object.

Following the creation of all the test
cases, we close the data file:

myDataFile.close()

The rest of the code in this
section goes inside the each
block (where we have the com-
ment Build the XML file…). The
first thing to do once we read in
each line is split up the data for
ease of use. In Ruby, we have
the .split() method, which does
just that. The following line of
code parses the data wherever it
finds a space between the data
elements. It then stores that
data in an array:

policyInfo = line.split(‘ ‘)

That code splits the policy informa-
tion, storing the policy number in
policyInfo[0], the policy version in
policyInfo[1], and the contract number
in policyInfo[2]. Next, we need to cre-
ate the new XML file for each line.
Something similar to the following
should work for that:

newXMLFile = File.open(‘C:/Service Testing/Service
A Testing/Request XML/’ + policyInfo[0] + ‘-rq.xml’,
“a”)

Notice that in the code above, we
name the XML file according to the
policy number. That’s because the poli-
cy number is the only thing that’s
unique in the data. We also had an XML
file-naming convention that included
three possible extensions: –rq,–rs and
–result.

The -rq file contains the request XML
for the call to the Web service.

The -result file contains the actual
result XML for the call to the Web serv-
ice. This file can be compared to the
expected result file (-rs) to see if the serv-
ice returned the correct XML response.
This file is automatically overwritten with
every call to the Web service.

The -rs file contains the expected
result XML for the call to the Web serv-
ice. This file can be compared to the
actual result file (-result) to see if the
service returned the correct XML
response. This file must be manually

-rq.xml Submit to
Web Service

-result.xml Optional File
Compare

-rs.xml

Pass/Fail Result

FIG. 1: XML FILE-NAMING CONVENTION

•
We used Ruby and JUnit for all

of our traditional black-box
testing, but we wanted more.

•

JULY 2006 www.stpmag.com • 15

RUBY OPEN-SOURCE SCRIPTING

overwritten or updated.
Figure 1, which depicts the XML file-

naming convention and process for file
use, shows how we used those files in
our testing.

Building the XML file is actually a
trivial exercise (or task) that amounts
to little more than a bunch of puts
commands for each line of the XML
we want to write. Puts writes out a
string to an I/O object (in this case, a
File) and appends a new-line charac-
ter if the string doesn’t already end in
one. We just copied and pasted the
XML into our Ruby script, wrapped it
with puts commands and inserted the
few unique values we needed in the
appropriate places. For example, look
at Listing 1.

Finally, before we finish with the new
XML file, we want to close it:

newXMLFile.close()

Executing the above code yields an
XML request file for each policy in the
data dump. Once we had the test data,
all we needed to do was run it through
the Web service using our earlier script.
But that’s not all we wanted to do. Since

we’re talking thousands of test cases
with multiple points where each can
fail, we also wanted simple validation
and detailed logging of results. User-
friendly logging is a must. We wrote our
results to csv files for easy formatting
and sorting.

Using Ruby to Validate XML and
Log Results
Once we had our bazillion test cases, we
needed to do the following:

1. Delete the old results file before
running the test and create a new
one (I could have just created a new
one with a time-date stamp, but I
took care of versioning a different
way).

2. Get all the files in the directory and
sort them.

3. For each file in the directory, execute
the service call, check for errors, and
validate the results that are returned.

4. Close the results file.

First, we want to delete the old
results file and create a new one stored
the path to the file in a variable to
make the code a bit more readable:

bulkTestResults = ‘C:/Service Testing/Service A
Testing/Test Results.csv’
if File.exists?(bulkTestResults) then
File.delete(bulkTestResults) end
myResultsFile = File.open(bulkTestResults, “a”)

Next, we need to find all the files in
the directory. I like to sort them by name
so that my results are sorted by policy
number (that’s how I named them when
writing the XML). In the following code,
the glob method returns an array of file
names matching the specified wildcard
pattern (I use * just to capture all the
files in the directory).

eachFileInDirectory = Dir.glob(‘C:/Service

Testing/Service A Testing/Request XML’ + ‘/*’).each

{ | file | file.downcase }.sort

For each file returned we change all
the characters in the name to lowercase
and then once all of them have been
changed to lowercase we sort the array
eachFileInDirectory. Changing the file
names to all lowercase renders the
results easier to read in the csv because
it makes all the file names consistent.

Again, we’ll need to use the each
method. For each file in the directory,
we want to process each test case file:

eachFileInDirectory.each do | testCaseFile |
#Do something with the file...

end

At the end of the script, we need to
close the results file:

myResultsFile.close()

Within the testCaseFile loop, we use
a flag for test case failures. That way, we
know to stop processing the other
checks we perform on the response
when a failure occurs. So the first thing
we do when we enter the loop is reset
that flag for the test case being execut-
ed:

testCaseFail = false

Next, we use the code covered above
to send the request to the service and
capture the response. The response then
gets written out to the “–Result” file.
That’s done for debugging and archiving
purposes. Next, we’ll look at how to open
the results file and validate the results.

In the code that follows, I’ll show an
example of validating only one type of
element (the policy number). You can
repeat that code as much as you like for
any elements you’d like to validate.

LISTING 1

newXMLFile.puts(‘<?xml version=”1.0” encoding=”UTF-8”?>’)
newXMLFile.puts(‘<ACORD
xmlns=”http://www.ACORD.org/standards/PC_Surety/ACORD1.7.0/xml/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>’)
newXMLFile.puts(‘ <SignonRq>’)
newXMLFile.puts(‘ <ClientDt>2005-12-22</ClientDt>’)
newXMLFile.puts(‘ <CustLangPref>en-US</CustLangPref>’)
newXMLFile.puts(‘ <ClientApp>’)
newXMLFile.puts(‘ <Org>Financial Services Company</Org>’)
newXMLFile.puts(‘ <Name>com.service.serviceA</Name>’)
newXMLFile.puts(‘ <Version>0.1</Version>’)
newXMLFile.puts(‘ </ClientApp>’)
newXMLFile.puts(‘ </SignonRq>’)
newXMLFile.puts(‘ <InsuranceSvcRq>’)
newXMLFile.puts(‘ <RqUID>00000000-0000-0000-0000-
000000000000</RqUID>’)
newXMLFile.puts(‘ <PolicySyncRq>’)
newXMLFile.puts(‘ <TransactionRequestDt>2005-12-
22T13:47:45.00000-05:00</TransactionRequestDt>’)
newXMLFile.puts(‘ <AsOfDt>2005-12-22</AsOfDt>’)
newXMLFile.puts(‘ <Producer>’)
newXMLFile.puts(‘ <ProducerInfo>’)
newXMLFile.puts(‘ <ContractNumber>’ +
policyInfo[2].chomp() + ‘</ContractNumber>’)
newXMLFile.puts(‘ </ProducerInfo>’)
newXMLFile.puts(‘ </Producer>’)
newXMLFile.puts(‘ <PolicyNumber>’ + policyInfo[0] +
‘</PolicyNumber>’)
newXMLFile.puts(‘ <PolicyVersion>’ + policyInfo[1] +
‘</PolicyVersion>’)
newXMLFile.puts(‘ </PolicySyncRq>’)
newXMLFile.puts(‘ </InsuranceSvcRq>’)
newXMLFile.puts(‘</ACORD>’)

16 • Software Test & Performance JULY 2006

RUBY OPEN-SOURCE SCRIPTING

They all look the same; just change the
XML element and/or the value you’re
looking for. In this example, we’re
going to verify that the results we got
back were the results for the correct pol-
icy number. If they aren’t, then we’ll log
a message indicating that we didn’t get
the policy number we expected (or that
we couldn’t find the XML element con-
taining the policy number).

The first thing we do is create a flag
that indicates whether or not we found
the XML element <PolicyNumber>:

tagFound = false

Then, we check to see if there was a
failure in an earlier test validation
check. If there was, we don’t continue:

if not testCaseFail then
#Rest of code here...

end

Inside that if statement, we open the
results file for the test we just ran:

myTestCaseFile =
File.open(testCaseFile.chomp.split(“-”)[0] +’-
results.xml’)

Then we check each line in the
results file for the <PolicyNumber> ele-
ment:

myTestCaseFile.collect do | line |
if line =~ /<PolicyNumber>/ then

#More code here...
end

end

In the code above, /<Policy
Number>/ is a regular expression. If
<PolicyNumber> is anywhere in the line,
then =~ evaluates to true. If that regular
expression evaluates to true, we’ll want
to check to make sure that the

<PolicyNumber> element contains the
correct policy number. If you remember
from above, the name of the test case file
is also the policy number. The next
chunk of code uses the .include?
method (which evaluates to a Boolean
value) to check to see if the policy num-
ber is there. Notice that we perform
some operations on the testCaseFile
variable. All we’re doing is isolating the
actual file name from the full path to the
file. We’re stripping off both the path
and the file extension. If the policy num-
ber isn’t found, we log an error to our
.csv results file and set the testCaseFail
flag to true.

if not line.include?(testCaseFile.split(‘/’)[-
1].chomp.split(“-”)[0]) then
myResultsFile.puts(testCaseFile.split(‘/’)[-1].chomp
+ ‘, FAIL, -result.xml, Could not find
<PolicyNumber> element that matched the policy
number requested.’)

testCaseFail = true
end

Whether we found the correct policy
number value or not, before we exit our
if statement we also need to set our
tagFound flag to true. That way, we won’t
log an error indicating that we couldn’t
find the tag.

tagFound = true

Next, we want to close the test case
results file:

myTestCaseFile.close()

And then we perform a check to see
if we actually found the element we
were looking for. If tagFound is false, we
log an error and set testCaseFail to true:

if not tagFound then

myResultsFile.puts(testCaseFile.split(‘/’)[-1].chomp

+ ‘, FAIL, -result.xml, Could not find

<PolicyNumber> element in response.’)
testCaseFail = true

end

We then repeat all that code for
each verification we want to perform
on the XML. I’ve thought about opti-
mizing the code to make it more mod-
ular, but it works, and I currently per-
form a handful of checks on each file.
At some point (once I have to start
scrolling my script more than a couple
of times) I’ll rework the code to make
it more modular.

That’s all there is to it. These scripts
made it possible to create several hun-
dred request test case files in a few sec-
onds and then execute them all and
perform simple verifications on the
results within about 45 minutes. All
the results were logged in a .csv file
that we could auto-filter based on
result or error message.

This made it easy to identify all
the affected policies when submitting
defects. We were able to do all our
traditional functional testing using
hand-coded XMLs and submitting
them using Ruby and JUnit, and then
we did some high volume automation
and found more than a handful of
very obscure and hard-to-anticipate
issues.

Scripting With Ruby Resources
As you begin your journey with Ruby,
you can find advice, new ideas and
friendly support at several rich
resources.

First, check out a couple of articles
by Brian Marick: “Behind the Screens”
(www.testing.com/writings/behind-
the-screens.pdf) and “Bypassing the
GUI”(www.testing.com/writings/bypas
sing-the-gui.pdf). Marick is also work-
ing on a book titled “Scripting for
Testers: Using Ruby” (Pragmatic
Bookshelf, 2006), which will be a must-
read for testers.

Another great place for Ruby tips
and tricks for testers is www.Watir.com,
which stands for Web Application
Testing in Ruby. WATIR is an open-
source test tool for automated testing
with Ruby. They have a strong mailing
list (which is searchable) and a lot of
helpful people.

Finally, grab a copy of “Ruby in a
Nutshell” by Yukihiro Matsumoto
(O’Reilly Media, 2001). I’ve found it a
must-have for writing Ruby code. !

SMOKE TESTING WITH RUBY AND OUTLOOK
One little trick we picked up along the way was to have Outlook kick off our smoke test
scripts (or build verification tests—depending on your preferred nomenclature). We were
testing several services, and each of them ran in several different environments. So we want-
ed our smoke test scripts to be available to the project team for any service, in any environ-
ment, at any time. The problem with that is that only a couple of us had Ruby installed (it
was not an “approved” technology at the time).

We needed a way for others to execute tests on our machines. Enter Outlook. All we
needed to do was add an Outlook rule that would launch the correct script on the local
machine based on the subject line of the e-mail. The requestor would send a headline of
“Smoke Test” followed by the service name and environment, and Outlook would launch a
batch file (I don’t believe that Outlook can run Ruby scripts) that would launch the Ruby
script. The test would execute and e-mail them the results.

It would also run in the background—so if I was working, I wouldn’t even know it had
happened (unless I was unusually observant that day). If you use the rubyw.exe instead of
ruby.exe to execute your scripts from the batch file (rubyw.exe doesn’t launch a DOS shell
when it runs), you shouldn’t even notice it running.

